

FACE EVOLUTION SYSTEM

Dr. Domingo Martín (Spain)

Dr. Jorge Ayala (Chile)

Dr. Douglas Knight (USA)

The orthodontic community has changed enormously in the last few years. In a competitive setting where cosmetics sales make up the majority of orthodontic treatments, we must today more than ever restate our belief that the present and future of our profession is going through a phase of clinical excellence. We understand orthodontics as a speciality whose purpose is integral oral health, in addition to aesthetics. Therefore, the aims of Stable Functional Occlusion, in addition to Dental and Facial Aesthetics, are goals that cannot be waived.

Over many years, our group has accumulated a vast amount of clinical experience, which has been backed by clinical studies and evidence and which, little by little, has led us down the path of excellence. Nothing has changed in the philosophy we defend; this is the guide that focuses us on attaining our aims.

However, the onset in the last few years of new technologies, both diagnostic and mechanical aspects, has led us to compare factors it was not possible to determine previously, which obliges us to query certain aspects of tooth positions and other mechanical options.

A painstaking investigation backed by clinical evidence enables us to update our technique and determine more precise values for the prescription, to help us to resolve common problems and focus more easily and quickly on achieving our aims.

We are proud to present FACE EVOLUTION.

Domingo Martín FACE Group Chairman

The Prescription.

Since the introduction of the straight wire appliance in 1970 by Lawrence F. Andrews, several prescriptions have arisen that modify some torque, angulation and rotation values; however, they basically maintain virtually all Andrews' original prescription values. In most cases, these modifications seek to resolve certain aspects of orthodontic biomechanics, without overlooking those in which no clear justification is observed.

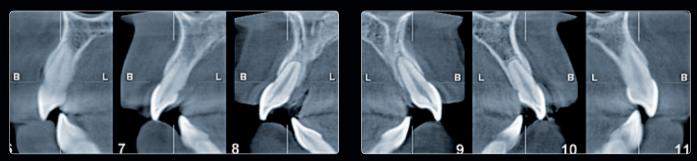
The latest developments also reveal that the concept of variable prescriptions has been taking over the single prescription to treat the entire spectrum of orthodontic abnormalities.

Tomography that reveals the radicular position of the upper premolars 2 months after inserting a .019"x .025" steel archwire in a bracket with torque –7°.

Tomography that reveals the radicular position of the upper canines with straight arch brackets with -2° torque, 2 months after inserting a .019" x .025" steel archwire.

Technological progress imposes new challenges on us: among them, Cone Beam Computed Tomography (CBCT), which provides us with a viewpoint of a reality we cannot obviate and doubtless will change many of the concepts of traditional orthodontics.

Studies performed with this diagnostic method reveal that a significant percentage of individuals present dehiscences and fenestrations before orthodontic treatment.


In addition to the above, evaluations under the use of CBCT, performed during the final stages of treatment, reveal a disturbing rate of roots outside the bone in different sectors of both jaws; this questions many of the values of negative torque, used in most prescriptions.

We admire the contribution made by Andrews, as one of the most important advances for orthodontics and everything appears to indicate that the values advocated by him, obtained from his sample of "abnormal orthodontics patients", are not applicable to all orthodontic patients, especially those presenting poor apical bases and/or thin periodontium, quite a common situation.

Our hypothesis is that the individuals studied by Andrews had ideal occlusion, most probably because of their correct basal and alveolar development, a very different situation to that presented by most patients we treat in daily practice. It goes without saying that at the time of performing this research, the diagnostic methods we have today were not available.

Difference between the information supplied in regard to bone by Orthopantomography and Cone Beam Computed Tomography.

FACE EVOLUTION Prescription

Modifications to torque

As we explained, extensive clinical research has enabled us to tackle and resolve the problems revealed on CBCT. Previously we have not been able to observe the thickness of the vestibular and lingual alveolar bone available for orthodontic movement; x-ray examinations revealed the mesial and distal bone levels of the dental roots and it is not uncommon to see, thanks to CBCT, that the available vestibular or lingual bone of the teeth limits and is even not conducive to certain kinds of movement.

This reality is especially common for the lower incisors and upper and lower canines, but can also be observed in any area of the jaws.

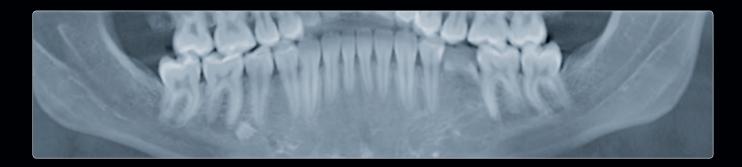
Torque in the Canines

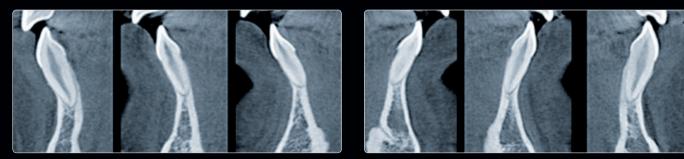
For the canines, it is normal to find one very thin and one appreciably thicker vestibular bone in the palatal region. There are several cases in which the radicular prominence of the canine is so clinically evident that it suggests a different clinical approach.

On these occasions, the CBCT will reveal a very thin layer of vestibular cortical bone, and in some cases, a bone fenestration that contraindicates any radicular movement towards the vestibular region.

Tomography revealing the most common situation in canines: a very poor or no vestibular bone, which contraindicates any kind of negative torque.

Clinical picture that clearly shows the radicular prominence and especially delicate periodontal situation in the upper canines.




After using a
.019" x .025" rectangular archwire with
brackets of torque
-2° in the upper
canines, it can be seen
that the radicular
problem is exacerbated further.

This quite common situation is the basis for our modification of torque from -2° to $+3^{\circ}$ in the upper canines and from -11° to -6° in the lower canines.

In those cases of extreme radicular prominence, FACE EVOLUTION suggests taking the root towards the cancellous bone by means of a specially designed bracket, which as will be explained below, we call a working bracket, with a positive torque of + 20° for upper and lower canines. The objective sought with this bracket, is to quickly take the canine root to the lingual cancellous bone. This torque that may appear excessive barely leads to sufficient movement, as its effect is higher on a crown than a radicular level and in cases of fenestrated roots, enables us to attain bone recoating of the defect. Once the expected effect is obtained, we switch the working bracket to the standard prescription bracket (+ 3°) or (-6°).

The CBCT image shows the bone limitations for movement of the incisors.

Torque in the Lower Incisors

For the lower incisors FACE EVOLUTION has brackets with torque -1° and -6° , which we can transform into $+6^{\circ}$ by merely inverting the position of the bracket by -6° .

While it is true that theoretically the bracket for lower incisors with $+6^{\circ}$ would be ideal to compensate class II malocclusions and give a correct anterior anchorage, for cases of minimum anchorage (and unlike the torque -6°), the truth is that the choice of incisor torque

will mainly be determined by the available alveolar bone in each case. The bone factor is the most important variable for the selection of the torque and tooth inclination and for the possibilities of anterior expansion, protrusion and retrusion.

The prescription considers this form, which is an important aim of Periodontal Health.

Picture of a tube of a known brand that reveals the features of the slot and the lack of rectangular form of a.019" x.025" steel archwire. Obvious explanation of the lack of efficiency to produce torque.

FORESTADENT.

Torque in the molars

Another area in which torque has been modified is that of the upper molars. Any orthodontist concerned about obtaining a functional occlusion knows that premature contacts in the second molars are very common. This is mainly due to the existence of positive molar torque, marked by "hanging" palatal cusps which interfere with the mandibular closure as it occludes with the tip of the antagonist cusps, which commonly also leads to lateral interferences. The problem we face clinically is that the straight arch wire is commonly inefficient when correcting molar torque, even when using .021" x .025" steel arch wires, which forces us to use Transpalate bars and/or torsion bends in the arches.

One of the causes of this inefficiency is the play presented by the arches in the lumen of the tubes. Several studies have demonstrated that this play is because of a slight oversizing of the slots of the brackets and play of the tubes and also the fact that the arches are slightly smaller than stated by manufacturers and often even have rounded edges. Tests performed with tubes from several companies reveal to us angles of torque loss of up to 26° with .019" x .025" steel arch wires and up to 11° with .021" x .025" arch wires.

Tomography that reveals this clinical situation in a 2nd left upper molar, in this case with an appropriate bone for correction of the torque (V: vestibular).

Common situation especially in the upper 2nd molars with positive torque, which not only leads to increased occlusal vertical size but also interference with centric and eccentric mandibular movements.

Tomography revealing the radicular situation to consider during correction of the torque (V: vestibular).

Models that reveal the before and after the correction of torque for the 7s.

To resolve this problem, a negative torque of -30° has been introduced into the upper molar tubes, which allows us to compensate the play of the wires in the tube and correct the torque effectively. However, special care must always be taken in regard to the amount of available bone, because in some cases this could even contraindicate any kind of movement. We would like to insist on the fact that the aim of this modification is not to attain a torque of -30° , but rather this is a way of compensating the torque loss of the arches in the tubes, to attain the torque specified by Roth of -14° , which in turn is an over correction of the torque reported by Andrews of -9° .

To summarise, the differences in torque in regard to Roth's prescription are found in the upper and lower canines, and the upper molars. The alternative for the lower incisor of -6° and $+6^{\circ}$ is also added.

Rotations

One of the attributes of the Roth prescription is the excellent anchorage obtained, to a large extent thanks to the distal rotation produced in the upper and lower molars. However, this feature which is so useful for retrusion of the anterior teeth, turns into a hindrance in two situations: the first, in cases of minimal anchorage, especially in the lower jaw; the second, to obtain suitable finishing, by not enabling correct intercuspation and coordination of the antagonist molars.

Indeed, virtually 100% of patients treated with this prescription, analysed in Centric Relation, present interference with the closure, especially the area of the second molars, which Roth's philosophy resolves, once the appliances are withdrawn, by using a gnathologic positioner.

This situation is because of the loss of alignment of the mesiodistal occlusal sulci of both the upper and lower first and second molars. The reason for this loss of alignment is found in the distal rotation

Occlusal photo that presents correct alignment of the mesiodistal sulci of the molars and premolars, a fundamental aspect to attain correct occlusion. The tubes used have a distal rotation of $+10^\circ$.

Occlusal photo that reveals the misalignment of the marginal ridges of the first and second upper molars, with tubes of $\pm 14^{\circ}$ distal rotation.

of 14° in the first molars, which has the consequence of an antagonistic reciprocal effect in the second molar, which is displaced towards the vestibular region. This undesired movement occurs when applying positive rotations above 10°, a usual situation in normal prescriptions, and conversely, does not appear when the

rotation of the first molar is +10°. To obviate this problem, we have maintained 10° rotation in the upper molars and 0° rotation in the lower molars, reported by Andrews; this enables perfect finishing in most cases and at the same time facilitates space closure in cases of minimal or medium anchorage.

Prescription for work and Prescription for finish

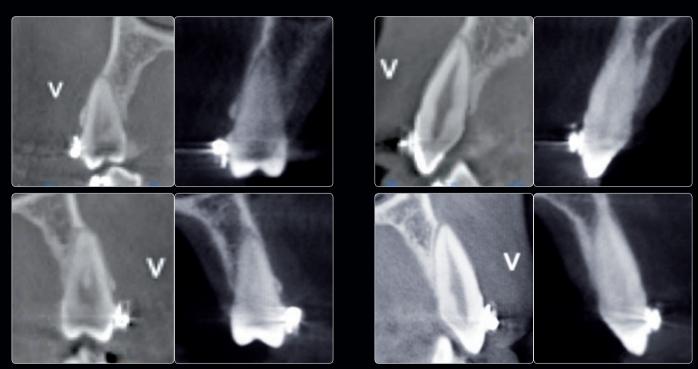
FACE EVOLUTION incorporates a new concept into orthodontic biomechanics: working prescription and finishing prescription.

The work prescription consists of using specific tubes and brackets for their temporary use in certain situations, with the purpose of facilitating attaining certain aims.

The Prescription for finish is the one obtained with the use of the standard FACE EVOLUTION prescription, a good finish in a high percentage of cases, without needing to bend the arches. In some situations, because of minor anatomic variations, the necessary adjustments should be performed.

Working Tubes

By varying the mesiodistal position of the tubes, we can modify the rotation values, and therefore, the anchorage values to tackle cases of minimum, medium and maximum anchorage.


Therefore, the tube will have three vertical guides that enable us to locate the tube more mesially for cases of maximum anchorage, or more distally for cases of minimum anchorage, and a central framework for cases of medium anchorage and finishing stage. These guidelines will coincide with the main vestibular sulcus as indicated. Tubes with marking will be available as of 2016.

With a same tube we can therefore attain three different anchorages (standard, $+4^{\circ}$ and -4°), simply and efficiently; the necessary inventory is also simplified; this is like having three different prescriptions in the same tube.

As its name indicates, the Prescription for work is the one with which we can perform specific actions, for example distalation or retrusion of the six anterosuperior teeth or mesialisation of the posterior segments, by increasing or reducing the anchorage as required.

Once the required aim is obtained, in this case closure of the spaces, we will switch to the Prescription for finish by positioning the tubes in the usual way.

Before and after correction with working bracket; the apex is seen inside the bone.

Working brackets

For cuspids, the working bracket with 20° positive torque will enable us to place these teeth in the required position to be subsequently replaced with the standard torque bracket or bracket with the final prescription.

For the mandible, the molar torque of –30° operates efficiently in most cases, although at times not in the case of second molars. Indeed, in a lower percentage of cases, the second lower molar "tips" towards the lingual region, especially in those cases with an accentuated curve of Spee.

The explanation appears to reside in the fact that when attempting to access these molars and given that the apices are in relation to the compact bone of the external oblique line, this undesired effect would occur, which is difficult to resolve.

Therefore, FACE EVOLUTION proposes a working tube with o° of torque which, once the molar torque has been corrected, should be replaced with the prescription's standard finishing tube.

Working brackets and working tubes FACE EVOLUTION System

Maxillary				C € 0297	Slot	.018"	Slot .022"	
Tooth	Torque	Angulation	In/Out	Rotation	Order no. Right Left		Order Right	no. Left
3 Cuspid	+14°	+8°	1,0	-	739-0323	738-0323	739-0321	738-0321
7 2. Molar	0°	0°	0°	6°	748-8311	748-8211	748-8321	748-8221

Bibliography

- Andrews LA. Straight Wire: The Concept and Appliance. San Diego, LA Wells 1989:18-24
- Roth RN. The maintenance system and occlusal dynamics. Dent Clin North Am 1976;20:761-788
- Dawson PE. Functional Occlusion from TMJ to Smile Design. St. Louis, CV Mosby 2007:57-68
- Lee RL. Esthetics and its relationship to function. In: Rufenacht C. ed. Fundamentals of Esthetics. Carol Stream, Quintessence 1990:145-148.
- McNeill C. Fundamental treatment goals. In: McNeill C, ed. Science and Practice of Occlusion. Carol Stream, Quintessence 1997:306-322.
- Spear FM. Fundamental occlusal therapy considerations. In: McNeil, ed. The Science and Practice of Occlusion. Carol Stream, Quintessence 1997:421-434.
 - Dawson PE: Functional Occlusion from TMJ to Smile Design. St. Louis, 2007, Mosby. pp.33-43.
 - Melsen, B., Delfino, Allais Factors of importance for the development of dehiscences during labial movement of mandibular incisors: A retrospective study of adult orthodontic patients. May 2005 Volume 127, Issue 5, Pages 552–561

Biomechanics

Active System and Hybrid System

It is difficult to come to an agreement in regard to which self-ligating system has more advantages and less disadvantages. Various papers conclude that sliding mechanics are favoured for the use of passive self-ligating brackets but control of the root position could be comprised. They also confirm that the sliding resistance (SR) is necessary when we have to produce torque and correctly position the root for correct finishing. The wish to minimise resistance to friction (SR) should be moderated, because of the need to control movement of the teeth. In the new FACE EVOLUTION we have opted to take the advantages of both parts by means of two versions: the Active System and the Hybrid System.

The active system gives us more control:

During subsequent treatment stages, sliding resistance (SR) increases along with the size of the arch. This provides better three-dimensional control and fills the sulcus to produce a torque force that correctly positions the root and the crown.

The Hybrid system provides the clinician with the best combination of low friction and control, especially in cases with extractions. A recent study performed by Dr Douglas Knight on 400 finished patients, concluded that the duration of treatment and number of appointments of 200 patients treated with the Hybrid System reduced by 15%.

⊘face

The FACE EVOLUTION Bracket. Fully redesigned bracket (4th generation 2014)

active – BioQuick® passive – BioPassive®

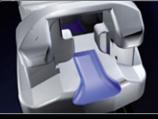
A stronger and wider clip, which can be replaced if required, and features a catch function for vestibular opening

Thanks to a separate o.016" x o.016" auxiliary slot, auxiliary units can be easily and simply inserted

Four rounded contact ribs in the slot reduce binding and notching

Thanks to the redesigned, anatomically-adapted base, positioning is a truly enjoyable task

Rounded bracket and slot edges for greater intraoral comfort and less friction


New catch function for easier gingival opening of the interactive clip

Surrounding pad edge reduces adhesive overflow

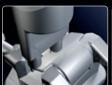
Single-piece bracket body: patented hook-shaped undercuts on the bracket base ensure reliable adhesion

Ultralow profile: makes the bracket more efficient and comfortable.

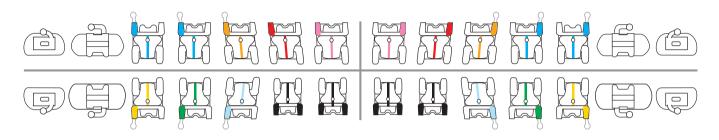
The equipment

Broad canal in the funnel: facilitates contact with the clip, leading to a remarkably simple opening from this area.

Broader and thicker clip:increases durability and improves control.


Magnificent digitalised anatomical base: facilitates positioning and bonding of the bracket.

Triple opening and new instrument system: gives the system versatility and facilitates opening from any position.



Two-pronged probe.

The active Prescription

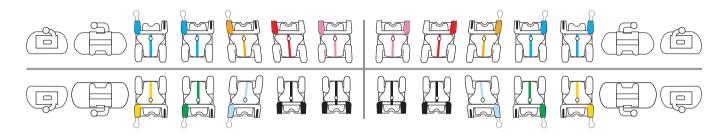
BioQuick® active Brackets – FACE EVOLUTION System

IV	laxillary				C € 0297	Slot	.018"	Slot .022"	
Te	eeth	Torque	Angulation	In/Out	Rotation	Ord Right	Order no. Right Left		er no. Left
1	Centrals	+12°	+5°	0,8	-	739-0103	738-0103	739-0101	738-0101
2	Laterals	+8°	+9°	1,3	-	739-0203	738-0203	739-0201	738-0201
2	Cuspids	+3°	+8°	0,8	-	739-0303	738-0303	739-0301	738-0301
3	Cuspids + hook	+3°	+8°	0,8	-	739-0313	738-0313	739-0311	738-0311
_	Bicuspids	-7°	0°	0,9	-	739-0503	738-0503	739-0501	738-0501
4	Bicuspids + hook	-7°	0°	0,9	-	739-0513	738-0513	739-0511	738-0511
5	Bicuspids	-7°	0°	0,9	-	739-0503	738-0503	739-0501	738-0501
5	Bicuspids + hook	-7°	0°	0,9	-	739-0513	738-0513	739-0511	738-0511
6	1. Molar	-30°	0°	-	10	739-0704	738-0704	739-0702	738-0702
7	2. Molar	-30°	0°	-	6	739-0804	738-0804	739-0802	738-0802

IV	landibular				C € 0297	Slot	.018"	Slot	.022"
Te	eeth	Torque Angulation In/Out		In/Out	Rotation	Order no. Right Left		Order no. Right Left	
1	Centrals	-1°	0°	1,4	-	738-1303	738-1303	738-1301	738-1301
2	Laterals	-1°	0°	1,4	-	738-1303	738-1303	738-1301	738-1301
2	Cuspids	-6°	+2°	1,2	-	739-1403	738-1403	739-1401	738-1401
3	Cuspids + hook	-6°	+2°	1,2	-	739-1413	738-1413	739-1411	738-1411
_	Bicuspids	-17°	0°	1,2	-	739-1503	738-1503	739-1501	738-1501
4	Bicuspids + hook	-17°	0°	1,2	-	739-1513	738-1513	739-1511	738-1511
_	Bicuspids	-22°	0°	1,2	-	739-1603	738-1603	739-1601	738-1601
5	Bicuspids + hook	-22°	0°	1,2	-	739-1613	738-1613	739-1611	738-1611
6	1. Molar	-30°	0°	-	-	739B1704	738B1704	739B1702	738B1702
7	2. Molar	-30°	0°	_	-	739-1804	738-1804	739-1802	738-1802

Cases / Variations		Slot .018"			Slot .022"				
	1	1 5		1	5	10			
475	706-1200	706-1201	706-1202	706-1209	706-1210	706-1211			
27 Ly 3	706-1203	706-1204	706-1205	706-1212	706-1213	706-1214			
حارية 3−2	706-1206	706-1207	706-1208	706-1215	706-1216	706-1217			

More optional torque for central and lower lateral teeth.


Mandibular CE0297					Slot	.018"	Slot .022"		
Teeth	Torque	Angulation	In/Out	Rotation	Orde Right	Order no. Right Left		Order no. Right Left	
1+2 Centrals / Laterals	-6° *	0°	1,4	-	738-1203	738-1203	738-1201	738-1201	

^{*}Bonding brackets upside down will convert from -6° Torque to +6° Torque. But keep in mind: the clip has to be opened to gingival. Please specify whether you prefer this option.

The hybrid Prescription

BioQuick® + BioPassive® Brackets - FACE EVOLUTION Hybrid System

Ma	axillary				C € 0297	Slot .018"		Slot	.022"
Teet	th	Torque Angulatio		In/Out	Rotation	Orde Right	r no. Left	Orde Right	r no. Left
1	Centrals	+12°	+5°	0,8	-	739-0103	738-0103	739-0101	738-0101
2	Laterals	+8°	+9°	1,3	-	739-0203	738-0203	739-0201	738-0201
3	Cuspids	-2°	+11°	0,8	-	739H0303	738H0303	739H0301	738H0301
	Cuspids + hook	-2°	+11°	0,8	-	739H0313	738H0313	739H0311	738H0311
_	Bicuspids	-7°	0°	0,9	-	739H0503	738H0503	739H0501	738H0501
4	Bicuspids + hook	-7°	0°	0,9	-	739H0513	738H0513	739H0511	738H0511
_	Bicuspids	-7°	0°	0,9	-	739H0503	738H0503	739H0501	738H0501
5	Bicuspids + hook	-7°	0°	0,9	-	739H0513	738H0513	739H0511	738H0511
6	1. Molar	-30°	0°	-	10	739-0704	738-0704	739-0702	738-0702
7	2. Molar	-30°	0°	-	6	739-0804	738-0804	739-0802	738-0802

IV	landibular				C € 0297	Slot	.018"	Slot	.022"
Те	eth	Torque	Torque Angulation In/Out Rota		Rotation	Orde Right	er no. Left	Order no. Right Left	
1	Centrals	-1°	0°	1,4	-	738-1303	738-1303	738-1301	738-1301
2	Laterals	-1°	0°	1,4	-	738-1303	738-1303	738-1301	738-1301
2	Cuspids	-11°	+7°	1,2	-	739H1403	738H1403	739H1401	738H1401
3	Cuspids + hook	-11°	+7°	1,2	-	739H1413	738H1413	739H1411	738H1411
_	Bicuspids	-17°	0°	1,2	-	739H1503	738H1503	739H1501	738H1501
4	Bicuspids + hook	-17°	0°	1,2	-	739H1513	738H1513	739H1511	738H1511
_	Bicuspids	-22°	0°	1,2	-	739H1603	738H1603	739H1601	738H1601
5	Bicuspids + hook	-22°	0°	1,2	-	739H1613	738H1613	739H1611	738H1611
6	1. Molar	–30°	0°	-	-	739B1704	738B1704	739B1702	738B1702
7	2. Molar	-30°	0°	-	-	739-1804	738-1804	739-1802	738-1802

Cases / Variations		Slot .018"		Slot .022"				
	1	5	10	1	5	10		
475	706H1200	706H1201	706H1202	706H1209	706H1210	706H1211		
۵٦ ديم ع	706H1203	706H1204	706H1205	706H1212	706H1213	706H1214		
G1-7° 3−5	706H1206	706H1207	706H1208	706H1215	706H1216	706v1217		

More optional torque for central and lower lateral teeth.

Mandibular CE0297					Slot	.018"	Slot .022"		
Teeth	Torque	Angulation	In/Out	Rotation	Orde Right	Order no. Right Left		Order no. Right Left	
1+2 Centrals / Laterals	-6° *	0°	1,4	-	738-1203	738-1203	738-1201	738-1201	

^{*}Bonding brackets upside down will convert from -6° Torque to +6° Torque. But keep in mind: the clip has to be opened to gingival. Please specify whether you prefer this option.

QuicKlear® brackets offer an aesthetic alternative and may be combined to active or hybrid cases.

In our series of ceramic brackets, QuicKlear* offers you an active, self-ligating version with flexible metal clip. QuicKlear* is convenient to handle and, thanks to the wide and interactive clip, offers a high degree of angulation, rotation and torque control.

- Translucent ceramic: Developed by us, less obvious for your patients.
- The clip is inconspicuous too: The chrome-cobalt clip shimmers with a matt lustre thanks to its surface treatment, rather than shining noticeably.
- Simply comfortable: Simple opening and closing of the clip makes application completely uncomplicated.
- Effectively combines: The bracket can be easily combined with BioOuick*.

Strong hold: With the inverted hook base we developed for ceramic brackets, QuicKlear* bonds to the tooth purely mechanically and excellently.

The equipment

Pauls-Tool for chip-free debonding.

QuicKlear® brackets can be opened from the gingival or from vestibular directions. The clip moves in the occlusal direction in these cases.

Quicklear® brackets are easy to remove with the Pauls-Tool. This special tool - which only we build - is simple to apply and is used with a tilting movement in the mesial or distal direction. Without damaging the precious brackets or the even more valuable dental enamel. No chipping, no fracturing. At the end of the treatment or if you have to reposition in-between: Place Pauls-Tool into position, remove the bracket, perform sand abrasion and bond again.

LA CERAMIC - - - - -

"Pauls-Tool" for debonding of QuicKlear[®] brackets. Order no. C501-0815.


Forestadent's additional opening tool makes opening particularly easy. Quicklear® are easy to open with a classical opening instrument.

Classic opening instrument, double sided. Order no. C501-1842

The active Prescription

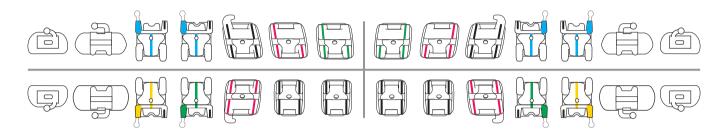
QuicKlear® Brackets – FACE EVOLUTION System

Maxillary				C € 0297	Slot	.018"	Slot	.022"
Teeth	Torque Angulation In/Out Rotation		Orde Right	Order no. Right Left		Order no. Right Left		
1 Centrals	+12°	+5°	0,8	-	C739-0103	C738-0103	C739-0101	C738-0101
2 Laterals	+8°	+9°	1,3	-	C739-0203	C738-0203	C739-0201	C738-0201
3 Cuspids + hook	+3°	+8°	0,8	-	C739-0313	C738-0313	C739-0311	C738-0311
4 Bicuspids	-7°	0°	0,9	-	C739-0503	C738-0503	C739-0501	C738-0501
Bicuspids + hook	-7°	0°	0,9	-	C739-0513	C738-0513	C739-0511	C738-0511
Bicuspids	-7°	0°	0,9	-	C739-0503	C738-0503	C739-0501	C738-0501
Bicuspids + hook	-7°	0°	0,9	-	C739-0513	C738-0513	C739-0511	C738-0511
6 1. Molar	-30°	0°	-	10	739-0704	738-0704	739-0702	738-0702
7 2. Molar	–30°	0°	-	6	739-0804	738-0804	739-0802	738-0802

N	landibular (€ 0297	Slot	.018"	Slot	.022"
Te	eeth	Torque	Angulation	In/Out	Rotation	Order no. Right Left		Orde Right	r no. Left
1	Centrals	-1°	0°	1,4	-	C738-1303	C738-1303	C738-1301	C738-1301
2	Laterals	-1°	0°	1,4	-	C738-1303	C738-1303	C738-1301	C738-1301
3	Cuspids + hook	-6°	+2°	1,2	-	C739-1413	C738-1413	C739-1411	C738-1411
4	Bicuspids	-17°	0°	1,2	-	739-1503	738-1503	739-1501	738-1501
4	Bicuspids + hook	-17°	0°	1,2	-	739-1513	738-1513	739-1511	738-1511
5	Bicuspids	-22°	0°	1,2	-	739-1603	738-1603	739-1601	738-1601
Э	Bicuspids + hook	-22°	0°	1,2	-	739-1613	738-1613	739-1611	738-1611
6	1. Molar	-30°	0°	-	-	739B1704	738B1704	739B1702	738B1702
7	2. Molar	-30°	0°	-	-	739-1804	738-1804	739-1802	738-1802

Cases / Variation		Slot .018"			Slot .022"				
	1	1 3			1	3	6		
신기년 3	C706-1203	C706-1204	C706-1205		C706-1212	C706-1213	C706-1214		
حاربي ₃₋₅	C706-1206	C706-1207	C706-1208		C706-1215	C706-1216	C706-1217		

Optionally more torque on mandibular Centrals and Laterals


Mandibular C60297			C € 0297	Slot	.018"	Slot	.022"	
Teeth	Torque	Angulation	In/Out	Rotation	Order no. Right Left		Order no. Right Left	
1+2 Centrals / Laterals	−6° *	0°	1,4	-	C738-1203	C738-1203	C738-1201	C738-1201

^{*}Bonding brackets upside down will convert from -6° Torque to +6° Torque. But keep in mind: the clip has to be opened to gingival. Please indicate if you prefere this option.

The hybrid Prescription

BioQuick® + BioPassive® Brackets - FACE EVOLUTION Hybrid System

Maxillary	laxillary censes				Slot	.018"	Slot .022"		
Teeth	Torque	Angulation	In/Out	Rotation	Order no. Right Left		Order no. Right Left		
1 Centrals	+12°	+5°	0,8	-	C739-0103	C738-0103	C739-0101	C738-0101	
2 Laterals	+8°	+9°	1,3	-	C739-0203	C738-0203	C739-0201	C738-0201	
3 Cuspids + hook	+3°	+8°	0,8	-	C739-0313	C738-0313	C739-0311	C738-0311	
Bicuspids	-7°	0°	0,9	-	739H0503	738H0503	739H0501	738H0501	
Bicuspids + hook	-7°	0°	0,9	-	739H0513	738H0513	739H0511	738H0511	
5 Bicuspids	-7°	0°	0,9	-	739H0503	738H0503	739H0501	738H0501	
Bicuspids + hook	-7°	0°	0,9	-	739H0513	738H0513	739H0511	738H0511	
6 1. Molar	-30°	0°	-	10	739-0704	738-0704	739-0702	738-0702	
7 2. Molar	–30°	0°	-	6	739-0804	738-0804	739-0802	738-0802	

M	Mandibular C602				C € 029 7	Slot .018"		Slot .022"				
Те	eth	Torque	Angulation	In/Out	Rotation	Order no. Right Left					Order no. Left	
1	Centrals	-1°	0°	1,4	-	C738-1303	C738-1303	C738-1301	C738-1301			
2	Laterals	-1°	0°	1,4	-	C738-1303	C738-1303	C738-1301	C738-1301			
3	Cuspids + hook	-6°	+2°	1,2	-	C739-1413	C738-1413	C739-1411	C738-1411			
4	Bicuspids	-17°	0°	1,2	-	739H1503	738H1503	739H1501	738H1501			
4	Bicuspids + hook	-17°	0°	1,2	-	739H1513	738H1513	739H1511	738H1511			
5	Bicuspids	-22°	0°	1,2	-	739H1603	738H1603	739H1601	738H1601			
Э	Bicuspids + hook	-22°	0°	1,2	-	739H1613	738H1613	739H1611	738H1611			
6	1. Molar	-30°	0°	-	-	739B1704	738B1704	739B1702	738B1702			
7	2. Molar	-30°	0°	-	-	739-1804	738-1804	739-1802	738-1802			

Cases / Variation	Slot .018"			Slot .022"			
	1	3	6	1	3	6	
선구도 3	C706H1203	C706H1204	C706H1205	C706H1212	C706H1213	C706H1214	
طاريم 3−2	C706H1206	C706H1207	C706H1208	C706H1215	C706H1216	C706H1217	

Optionally more torque on mandibular Centrals and Laterals

Mandibular CC0297			C € 0297	Slot	.018"	Slot	.022"	
Teeth	Torque	Angulation	In/Out	Rotation	Order no. Right Left		Order no. Right Left	
1+2 Centrals / Laterals	-6° *	0°	1,4	-	C738-1203	C738-1203	C738-1201	C738-1201

^{*}Bonding brackets upside down will convert from -6° Torque to +6° Torque. But keep in mind: the clip has to be opened to gingival. Please indicate if you prefere this option.

Sequence of arches

Alignment stage

Straight-Arch-Form

Euro-Smile-Form

C € **0297**

anginnent stage		1 1
description	Maxillary	Mandibular
	203-0825	203-0925
BioStarter®	203-0830	203-0930
biostarter	203-0835	203-0935
	203-0845	203-0945
BioTorque®	203-2048	203-2148

					C C 0237
Maxillary	Mandibular	Profile	Force	ø Inch	Cont.
203-1825	203-1925		20 g	.010	10
203-1830	203-1930		30 g	.012	10
203-1835	203-1935		40 g	.014	10
203-1845	203-1945		70 g	.018	10
203-4048	203-4148		170 g	.019 x.025	10

Working stage

< € 0297

description	Order no.	Profile	Size	ø Inch	Content
	254-2640		26 mm	.016 x. 022	10
	254-2840		28 mm	.016 x .022	10
	254-3040		30 mm	.016 x .022	10
	254-3240		32 mm	.016 x .022	10
	254-2648		26 mm	.019 x .025	10
	254-2848		28 mm	.019 x .025	10
Stainless steel arch wires 4-loop	254-3048	_	30 mm	.019 x .025	10
4 1004	254-3248		32 mm	.019 x .025	10
	254-3448		34 mm	.019 x .025	10
	254-3648		36 mm	.019 x .025	10
	254-3848		38 mm	.019 x .025	10
	254-4048		40 mm	.019 x .025	10

Working stage

Description

Euro-Smile-Form	1		
Maxillary	Mandibular	Profile	Force

Stainless steel arch wires	202-3748	202-3848	201-374	1.8	201-3848		-	.019 x .025	10
description	Order no.		profile	siz	P	ø inc	h	content	+
uescription			projite						
	256-2648			26 n		.019 X		5	
TMA T-Loop archwire	256-2848			28 n	nm	.019 X	025	5	
	256-3048			30 mm		.019 x	025	5	
	256-3248		_	32 n	nm	.019 x	025	5	
	256-3448		_	34 n	nm	.019 x	025	5	
	256-3648			36 n	nm	.019 X	025	5	
	256-3848			38 n	36 mm 38 mm 40 mm	.019 x	025	5	
	256-4048			40 n	nm	.019 X	025	5	
	255-2648			26 n	nm	.019 x	025	10	
	255-2848			28 n	nm	.019 x	025	10	
V	255-3048			30 n	nm	.019 x	025	10	
Stainless Steel	255-3248		_	32 n	nm	.019 x	025	10	
posted archwire	255-3448		_	34 n	nm	.019 x	025	10	
	255-3648			36 n	nm	.019 x .025 10 .019 x .025 10 .019 x .025 10 .019 x .025 10			
	255-3848			38 n	nm	.019 x	025	10	
	255-4048			40 n	nm	.019 x	025	10	

Finishing stage

C € 0297

Cont.

ø Inch

BioFinisher*	203-2054	203-2154
DIOFINISHEI	203-2053	203-2153
Stainless steel arch wires	202-3754	202-3854

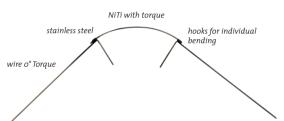
203-4054	203-4154	140 g	.017 X .025	10
203-4053	203-4153	200 g	.021 X .025	10
201-3754	201-3854	-	.021 X .025	10

Eight strand Braided	Maxillary	Mandibular	Profile	ø Inch	Content
stainless steel archwire	200-8440	200-8540		.019 x .025	10

The equipment

The FACE EVOLUTION VPT Tubes

(Variable Prescription Tube. Marking available as of 2016.)


VPT FACE EVOLUTION tubes for 1st Maxillary molar enables different bonding positions, which are marked on the base of the bracket:

Variation in position	Upper Tube 1st Molar		
Minimum anchorage	6°		
FACE EVOLUTION Prescription	10°		
Maximum anchorage	14°		

In this way the same tube with the FACE EVOLUTION prescription serves as a "working bracket" for different situations throughout treatment. Several prescriptions in the same tube mean versatility and a reduced inventory.

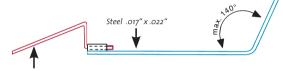
Auxiliaries

Special Auxiliares Retraction and torque arch*

The retraction and torque arch wire is used for bodily retraction and torquing of anterior teeth.

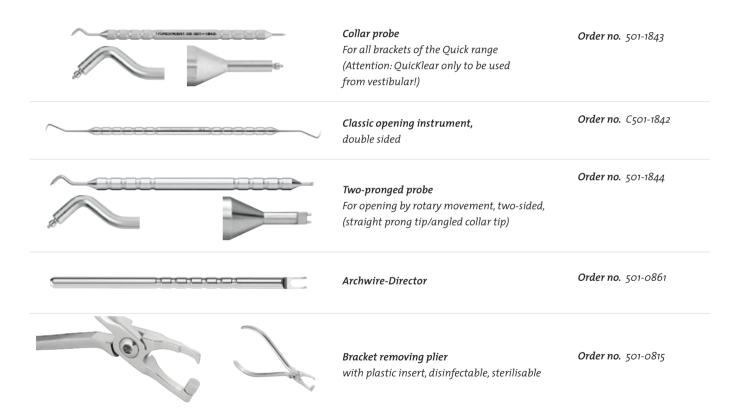
C € **0297**

Order no.	anterior segment	torque	lateral segment	technique	content
210-3040	.016 x .022	30°	.017 X .022	.018	7
210-2040	.016 x .022	45°	.017 X .022	.018	1
210-2044	.017 x .025	30°	.017 X .022	.022	1
210-2046	.018 x .025	45°	.017 X .022	.022	1
311-1030			Ti. 1	12 mm	10
311-1031			Titanol Instant tension spring	18 mm	
654-0001			Plastic protection tube for tension spring		1
732-0005	CE		Township	.018	1
732-0006			Torque key	.022	


*acc. to Prof. Dr. F. G. Sander

Memory Titanol® Spring for uprighting of the molars*

Titanol .016" x .022" / .018" x .025"


Uprighting spring

By using the superelastic Titanol® wire with its Martensite plateau a biological favourable low force is effective to the uprighting of the molars.

Orde Slot .018	er no. Slot .022		content	description
307-1011	307-1013	& ~	10 + 10	Set with cross tube
307-1010	307-1012		10	Uprighting spring
760-0062	760-0063	8	10	Cross tube
.016" x .016"	307-1009		10	Molar-Uprighting spring (.016" x .016" – Stiff) High resilient, for the auxilliary slot of the Quick brackets

Instruments

Imprint

ist Edition 03.2015 © FORESTADENT Bernhard Förster GmbH Westliche Karl-Friedrich-Straße 151 · 75172 Pforzheim · German_j Phone + 49 7231 459-0 · Fax + 49 7231 459-102 info@forestadent.com

